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1. Introduction

To measure MR spectra in vivo, one needs to control the spatial origin of the detected signals.
For diagnostic purposes, one is not interested in a global spectrum representing the average
metabolic composition of the whole patient, but in the metabolism of some specific organ or
lesion. Because of the poor sensitivity, the issue of spatial localization is more delicate in MRS
than in MRI, as the size of the selected volume typically has to be large, on the order of 1 cc or
more. This often leads to signal contamination from adjacent tissue and to partial volume effects.
A good control of the spatial origin therefore is crucial for a high quality of the acquired spectra.

2. Fundamentals

The one major physical frontier that in vivo MRS has to cope with is the limited spatial
resolution as consequence of the inherently low sensitivity. Most other hurdles such as limited
field-of-view or patient motion, to name just a few, are "merely" technological challenges. The
latter may be very complex issues, which need a lot of clever engineering to overcome them. The
limited resolution, however, is a fundamental physical limit, and current instrument designs are
already close to the theoretical optimum. As long as there is no technological break-through, we
will have to live with what is currently
available: there is no hope to substantially
increase sensitivity or spatial resolution. Fig. 1 I %
gives a striking example of this limitation.

Often, one sees anatomical images with a
box superposed, and it is claimed that a MR
spectrum is originating from within that box.
This is a very simplified representation. In
reality, 'spatial localization' does not generate /
sharp borders. It rather produces a 'localization
profile' that depends on the frequency profile of
the selective pulses used in single voxel
spectroscopy, or the so-called 'spatial response
function' in spectroscopic imaging. The
localization profile determines how much signal
is lost within the voxel-of-interest (VOI), and
by how much the localized spectrum is
contaminated by signal originating from outside
the VOL
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Fig. 1: The duration necessary to measure the
MR signal from a certain volume with a given
signal-to-noise ratio (SNR) increases with the
6th (!) power of the linear dimension of the
volume. For example, if a spectrum with a SNR
of 10 can be acquired of the large sphere in 10
min, it takes 11 hours to acquire a spectrum of
the small sphere with half the diameter.




3. Single voxel methods

The merit to have invented the first method to collect the MR spectrum from a well-delineated
volume, based on the simultaneous use of selective RF pulses and pulsed gradients, goes to
W. Aue and his "volume-selective excitation" (VSE) (/). VSE stimulated the development of a
number of improved methods. These methods all make use of modulated, frequency-selective
RF pulses played out in the presence of a pulsed gradient field.

To select a box, three selective pulses are applied one after the other, in the presence of
mutually orthogonal field gradients. The intersection of the three excited planes is the (more or
less) cube-shaped volume-of-interest (VOI, fig. 2). The so-called “single voxel methods” thus
acquire the spectrum of a single selected volume within the sample — the detected signal
originates from the intersection of the three slices. Single voxel methods have the following
advantages: they are usually quite easy to implement, most modern MR instruments already
have such measurement protocols implemented. Single voxel methods are quite reliable and
reproducible, and they have a short minimal duration. Finally, they produce only a small amount
of data, which facilitates data analysis.

The various single voxel methods have somewhat different properties, depending on
whether the slice-selective pulses are 90°- or 180°-pulses. The three main representatives of
these methods are ISIS (2), STEAM (3-5) and PRESS (6). Whenever applying slice selective
pulses or readout gradients, this leads to a complication known as chemical shift artifact. If
various substances have different resonance frequencies due to their different chemical shift, the
position of the selected slice will not be the same for all metabolites. Depending on the range of
chemical shifts and the strength of the slice gradient, this displacement can be several
millimeters or even centimeters: the broader the chemical shift range 6 and the weaker the slice
gradient G, the stronger the chemical shift artifact Ar:

B
ArzG—°-§ [Eq. 1]
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4. Spectroscopic imaging

In the same experimental duration that a single voxel method acquires the spectrum of a single
VOI, spectroscopic imaging (7, 8) can collect the spectra data of a whole grid of many voxels. A
spectroscopic image covers a whole plane (or a 3D volume) across the sample, with identical
spatial resolution and the same signal-to-noise ratio. Just like MRI, this produces an image of the
object. In contrast to MRI, each pixel of a metabolic image contains not a single gray value but a
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Fig. 2: (a) Applying three selective pulses in the presence of three mutually orthogonal gradients, three
intersecting slices are excited. (b) The volume-of-interest (VOI) is the intersection of the three slices.



full MR spectrum. Such, the spatial distribution of specific metabolites can be visualized. If the
spatial distribution of metabolites is of interest (rather than just the metabolic profile at one
specific location), spectroscopic imaging is therefore a much more efficient way to record the
data than single voxel methods.

These techniques are usually referred to as ‘“‘chemical shift imaging CSI” or as
“spectroscopic imaging SI”. Usually, they employ phase-encoding gradients to encode the
spatial dimensions, and the MR signal is then collected in absence of any gradient in order to
maintain the spectroscopic information (Fig. 3). Imaging-type methods, however, have the
disadvantage that the shape of individual voxels is less well defined than in single voxel
techniques. The shape of a voxel is indicated by the 'spatial response function' (SRF), which
indicates the weight with which every point in object space contributes to a local spectrum. The
shape of the SRF is less 'square' than for single voxel methods, indicating signal loss within the
VOI, and contamination from outside. The nominal spatial resolution is given by the 64%-
amplitude of the SRF (9). In conventional spectroscopic imaging, the strong undulations of the
baseline of the SRF cause very strong spatial contamination. Whenever possible, some scheme
for acquisition weighting (rather than k-space filtering) should be used, in order to attenuate this
contamination without giving up sensitivity (/0-14).

The minimal duration of a conventional spectroscopic imaging study may be governed not
by the time needed to achieve a sufficient signal-to-noise ratio, but by the time required to
perform all the transients for all the different phase-encoding steps. This becomes a limitation in
particular if a spectroscopic image with three spatial dimensions is to be collected. If for
example a spectroscopic image with a spatial matrix of 32 x 32 x 16 were to be acquired, this
would need a scan time of more than 4%2 hours using a repetition time of TR =1 sec — far too
long to be tolerable by patients. Various schemes for fast spectroscopic imaging therefore have
been devised to accelerate the data acquisition (provided that sufficient sensitivity is available).
One of the easiest strategies already implemented on some clinical scanners is circular (or
elliptical) k-space sampling: only data from the center of k-space are collected, its corners which
contribute only little signal are omitted (/5). Circular k-space sampling can be considered as the
first stage of the afore-mentioned k-space weighting (/0-14), and one should keep in mind that it
does have an influence on the shape of the SRF and thus on the localization properties.

The most prominent methods of fast spectroscopic imaging employ pulsed magnetic field
gradients during data acquisition to increase the speed of k-space coverage. This was proposed as
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Fig. 3: The basic pulse sequence for spectroscopic imaging in two spatial dimensions. After the RF
excitation pulse, short gradient pulses are applied, which modulate the phase of the MR signal. The data
are collected in the absence of any gradient, maintaining the spectral information. This procedure is
repeated many times, ramping the gradient pulses independently in the two directions through all the
values needed to obtain the desired spatial resolution. The metabolic image is reconstructed by Fourier
transformation both in the spatial and the spectral dimensions.



early as 1984 by the inventors of echo planar imaging, P. Mansfield er al. (16-18). Several
modifications and improvements of this original technique have been proposed (/9-217). In
addition to these methods which are based on a (more or less) rectilinear sampling of k-space,
spiral scanning schemes are very attractive, because of their even faster coverage of k-space and
some inherent advantageous weighting of k-space (22-24). Many sequences for fast
spectroscopic imaging have been reviewed by R. Pohmann et al. (25).

The main advantages and disadvantages of single voxel methods compared to
spectroscopic imaging are summarized in the table below.

5. Field Homogeneity and Shim

The homogeneity of the main static magnetic field is another essential parameter which
determines the quality and the success rate of spectroscopic studies in vivo. The homogeneity
limits the line-width in the spectra and thus both the spectral resolution and the sensitivity.
Furthermore, in 'H-MRS, poor homogeneity renders water-suppression inefficient, which is one
of the biggest hurdles for spectroscopic imaging.

The field homogeneity is not only determined by the magnet design, but it is perturbed by
the inhomogeneous magnetic properties of the patient or sample, i.e. the magnetic susceptibility
changes for instance at air-tissue interfaces. The higher the magnetic field, the stronger are the
perturbations introduced by the patient. Some means to compensate these field deformations is
therefore required, in particular on high-field instruments. In the early days of NMR, field
homogeneity was optimized by introducing small iron plates to the magnet, the so-called
‘shims’. Today, field homogeneity is rather adjusted by varying the current in additional coils
which generate magnetic fields of appropriate geometry (26), but the name ‘shimming’ has
remained.

It is essential that the total duration of a MRS examination remains acceptable. The former,
time-consuming manual shim adjustment procedures therefore are more and more replaced by
sophisticated, (semi-)automatic procedures (27-34). These have significantly improved both the
comfort and the time needed to obtain optimal shim settings. It is important to realize, however,
that shimming can only be a rather superficial, symptomatic cure: due to fundamental physical
principles, it is not possible to fully compensate the local field perturbations by means of
globally acting shim-coils.

Single Voxel Spectroscopic Imaging
++ localization in single scan (shim) + minimal duration long (Nyx X Ny x TR)
- chemical shift artifact +/-  Spatial response function
+/-  only single voxel ++  full volume coverage
++  well implemented, robust ++ highly efficient
+  water-suppression relatively easy --  water suppression shim-dependent
+ processing relatively easy - large amount of data

Table 1: Comparison of some essential properties of single voxel localization vs. spectroscopic imaging
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